Hall Tic	ket Nui	mber:					
							Code No. : 16605 N (A)

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (IT: CBCS) VI-Semester Main Examinations, May-2019

Data Mining (Elective-I)

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

.No.	Stem of the question	M	L	CO	PC
	$Part-A (10 \times 2 = 20 Marks)$				
1.	Given a group of 12 sales price records has been sorted as follows: 5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 Partition them into three bins by equal-width partitioning.	2	2	1	2
2.	In a supermarket dataset the customer income attribute values are missing. How these missing values of this attribute are filled?	2	2	1	1
3.	Compare Data Warehouse and Heterogeneous DBMS.	2	2	2	1
4.	Give a short example to show that items in a strong association rule actually may be negatively correlated.	2	3	2	1
5.	Why is tree pruning useful in decision tree induction?	2	1	3	1
6.	In an Electronics Customer Database (D), The class label attribute, buys computer, has two distinct values {Yes, No}. There are nine tuples of class Yes and five tuples of class No. Compute information gain needed to classify a tuple in D.	2	2	3	2
7.	What are the drawbacks of K-means clustering method?	2	2	4	1
8.	Compare agglomerative and divisive hierarchical clustering.	2	2	4	1
9.	List any two applications of Web Mining.	2	1	5	2
10.	What are n-grams? How are they used in text mining?	2	1	5	2
	Part-B (5 \times 10 = 50) Marks				
11.a)	Describe the steps involved in data mining when viewed as a process of knowledge discovery.	4	2	1	1
b)	Given the attribute age has the following values: 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 36, 40, 45, 46, 52, 70. i) Plot an equal-width histogram of width 10. ii) Apply smoothing by bin means to smooth these data, using a bin depth of 3. Comment on the effect of this technique for the given data.	6	3	1	2

2.a)	Compare example.	Snowflake sch	hema, fact co	onstellation, s	tar schem	a model with an	4	3	2	1
b)	A databas	6	3	2	2					
	TID									
	T100									
	T200 {1									
	T300									
	T400									
	Find all fi	equent itemse	ts by applying	Apriori Algo	orithm.					
3.a)						class membership	4	2	3	
	probabilit	ies.								
b)						attributes can be	6	3	3	2
	considere	d as predictors	and E colum	in as target va	riable hav	ing class labels.				
	1	4.8	3.4	1.9		positive				
	2	5	3	1.6	0.2	positive				
	-4	5.2	3.4	1.6	0.4	positive				
	5	5.2	3.4	1.4	0.2	positive				
	7	4.7	3.2	1.6	0.2	positive				
	8	5.4	3.1	1.6	0.2	positive				
	9	7	3.2	4.7	1.4	negative				
	10	6.4	3.2	4.5	1.5					
	11	5.5	2.3	4.9	1.5	negative				
	2.3	6.5	2.8	4.6	1.5					
	1.5	5.7	2.8	4.5		negative negative				
	16	4.9	2.4	3.3	1					
4.a)	Analyze	4	4	4						
	than parti	tioning-based	clustering and	d hierarchical	clustering	g.				
b)	Suppose that the data mining task is to cluster points (with (x, y) representing									
	location) into three clusters, where the points are: A1(2,10),A2(2,5),A3(8,4),B1(5,8),B2(7,5),B3(6,4),C1(1,2),C2(4,9).									
	The dista									
	B1, and									
	algorithm									
	i) The t									
	ii) The									
	****	What techniques are used for mining the Web? Illustrate with examples.					5	1	5	
15.a)	What tec		Discuss the method of mining spatial databases in detail.					2	5	
15.a) b)		he method of	mining spatial	databases in	uctail.		5			
b)	Discuss t	-				and (20, 0, 36, 8):		2	1	
b)	Discuss t	o objects repre	esented by the	e tuples (22, 1	, 42, 10) a	and (20, 0, 36, 8):	5	2	1	
b)	Discuss to Given tw i) Con	o objects repro	esented by the	e tuples (22, 1 e between the	, 42, 10) a	ets.		2	1	
b)	Discuss to Given tw i) Con ii) Con	o objects reprendent the Eucl	esented by the idean distance hattan distance	e tuples (22, 1 e between the	, 42, 10) a two object two object	ects.		2	1	
b)	Discuss to Given tw i) Con ii) Con	o objects repro	esented by the idean distance hattan distance	e tuples (22, 1 e between the	, 42, 10) a two object two object	ects.		2	1	